Scientific Paper
Related:
Show all related links >>
www.nature.com
The invisible witness, air and dust as DNA evidence of human occupancy in indoor premises | Scientific Reports (https://www.nature.com/articles/s41598-023-46151-7)
pmc.ncbi.nlm.nih.gov
Identifying Potential Ageing-Modulating Drugs In Silico - PMC (https://pmc.ncbi.nlm.nih.gov/articles/PMC6362144/)
iopscience.iop.org
Testing CCC+TL Cosmology with Observed Baryon Acoustic Oscillation Features - IOPscience (https://iopscience.iop.org/article/10.3847/1538-4357/ad1bc6)
onlinelibrary.wiley.com
The Molecular Landscape of Premature Aging Diseases Defined by Multilayer Network Exploration - Beust - Advanced Biology - Wiley Online Library (https://onlinelibrary.wiley.com/doi/10.1002/adbi.202400134)
www.semanticscholar.org
[PDF] AI In Pharmacy | Semantic Scholar (https://www.semanticscholar.org/paper/AI-In-Pharmacy-Vaishnavi-Hole/86f6c15b96612e1570847b04e41c71a1ac5036c6)
arxiv.org
[2405.15071] Grokked Transformers are Implicit Reasoners, A Mechanistic Journey to the Edge of Generalization (https://arxiv.org/abs/2405.15071)
www.nature.com
Average is Boring, How Similarity Kills a Meme's Success | Scientific Reports (https://www.nature.com/articles/srep06477)
www.semanticscholar.org
The Hallmarks of Aging | Semantic Scholar (https://www.semanticscholar.org/paper/The-Hallmarks-of-Aging-L%C3%B3pez-Ot%C3%ADn-Blasco/2cc969496e47cd2ad13b851733948b13dcd0cc00#citing-papers)
www.semanticscholar.org
[PDF] Unsupervised Learning via Network-Aware Embeddings | Semantic Scholar (https://www.semanticscholar.org/paper/Unsupervised-Learning-via-Network-Aware-Embeddings-Damstrup-Madsen/8c78c0f7fdf425aa356de9b45a3a85ecee8ce1eb)
immunityageing.biomedcentral.com
The role of NLRP3 inflammasome in aging and age-related diseases - s12979-023-00395-z.pdf (https://immunityageing.biomedcentral.com/counter/pdf/10.1186/s12979-023-00395-z.pdf)
www.semanticscholar.org
[PDF] Graph Representation Learning in Biomedicine | Semantic Scholar (https://www.semanticscholar.org/paper/Graph-Representation-Learning-in-Biomedicine-Li-Huang/a4170bb4469802575795b2c7e707d936ffcd55c5)
bmcbioinformatics.biomedcentral.com
Graph embedding on mass spectrometry- and sequencing-based biomedical data - s12859-023-05612-6.pdf (https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05612-6.pdf)
link.springer.com
Complex Analysis of Single-Cell RNA Sequencing Data | Biochemistry (Moscow) (https://link.springer.com/article/10.1134/S0006297923020074)
arxiv.org
Aspects of the cosmological “coincidence problem” (PDF) (https://arxiv.org/pdf/1410.2509.pdf)
www.life-science-alliance.org
Patient-specific analysis of co-expression to measure biological network rewiring in individuals | Life Science Alliance (https://www.life-science-alliance.org/content/7/2/e202302253)
pdfs.semanticscholar.org
09994977083614b54fa629c9315c9e0511d1.pdf (https://pdfs.semanticscholar.org/6b78/09994977083614b54fa629c9315c9e0511d1.pdf)
pdfs.semanticscholar.org
Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations - 73e1c8e6f583e3b2aa4a773a95fd0ee3a155.pdf (https://pdfs.semanticscholar.org/0e24/73e1c8e6f583e3b2aa4a773a95fd0ee3a155.pdf)
A clustering method based on auto-encoder and self supervision, could be interesting to try (implemented in python)